СОДЕРЖАНИЕ
Что такое холодильник
Это аппараты, поддерживающие низкую температуру в теплоизолированной камере. Техника может быть как встраиваемой, так и отдельностоящей. Большинство современных домашних холодильников имеют морозильные отделения, за исключением холодильников для вина. На представленной ниже схеме холодильника указаны основные элементы и его принцип работы:
Схема работы холодильника
Кто изобрел холодильник
В древние времена скоропортящиеся продукты размещали в помещениях, наполненных снегом и колотым льдом. Прототип современного холодильника появился лишь в 1803 г в США. Томас Мур — это тот, кто придумал холодильник. В начале XVIII века Томас занимался поставками сливочного масла в Вашингтон и у него была необходимость сохранения свежести своего товара при длительных транспортировках. Устройство, изготовленное из тонких стальных пластин и помещенное в специальную бадью, засыпанную сверху льдом, было названо рефрижератором. Доподлинно неизвестно как выглядело его изобретение, нам удалось найти фотографии двух версий. Какая из них действительно была изобретена Муром — остаётся загадкой.
Рефрижератор Томаса Мура
В 1850 г. врач Джон Гори (по другой версии его фамилия пишется с двумя «р» — Горри) продемонстрировал прибор с компрессором, способный охлаждаться самостоятельно и производить лёд, по сути это была морозильная камера. Сначала подобная техника использовалась лишь в промышленности. Первый домашний холодильник работающий от сети начал продаваться только в 1913 г., но именно Гори считается человеком, кто изобрел холодильник.
Машина для производства льда Гори
Почему холодильники так называются? В русском языке слово холодильник имеет один корень со словом «холод», также как и «кипятильник» — «кипятить», «грелка» — «греть» и «светильник» — «светить». В английском языке для описания этого предмета используют два слова: refrigerator и fridge
История создания
Ранний электрический холодильник, с цилиндрическим теплообменником сверху. Из коллекции музея Thinktank (Англия).
Помещения для хранения продуктов, наполняемые льдом, появились несколько тысяч лет назад. Для императора Нерона слуги заготавливали на замёрзших водоёмах в горах снег и лёд. В Тёмные века Южная Европа долгое время даже не подозревала, что снег и лёд способны принести пользу в хозяйстве. Знаменитый путешественник и купец Марко Поло после длительного пребывания в Китае написал книгу, в которой описал все достоинства льда и снега.
Начиная с XVIII века ёмкости из фаянса и фарфора заполнялись бутылками с вином, после чего сверху укладывали колотый лёд. Своеобразный холодильник подавали прямо к столу.
В России широко использовались ледники, которые представляли собой сруб, врытый в землю. Набитый большим количеством снега и льда, укрытый толстым настилом, поверх которого была насыпана земля и уложен дёрн, такой ледник позволял хранить длительное время скоропортящиеся продукты.
В 1686 году итальянец Франческо Прокопио открыл в Париже кафе «Прокоп», которое пользовалось популярностью у парижан за счёт того, что в нём продавали замороженные щербеты и мороженое.
В 1803 году американский предприниматель Томас Мур, поставлявший в Вашингтон сливочное масло, представил миру прототип кухонного холодильника, изготовленного своими руками. Не имея возможности доставлять масло к месту назначения специальным транспортом, он разработал, а затем воплотил в жизнь модель, которая позволяла хранить продукты длительное время. Для изготовления рефрижератора , как предприниматель назвал своё изобретение, ему понадобились тонкие листы стали, из которых и была изготовлена ёмкость для масла. Обёрнутая шкурками кролика, ёмкость была помещена в специальную бадью, изготовленную из кедровых клепок, и затем засыпана сверху льдом.
Массово использовались в середине XIX века домашние ледники. Внешне их невозможно было отличить от обычных кухонных шкафов. Кроличьи шкурки для теплоизоляции уже не использовались, вместо них засыпались опилки и пробка. Отсек, который заполнялся льдом, в одних моделях был под камерой для продуктов, а в других над ней. Через кран талая вода сливалась в специальный поддон.
14 июля 1850 года американский врач Джон Гори впервые продемонстрировал процесс получения искусственного льда в созданном им аппарате. В своём изобретении он использовал технологию компрессионного цикла, которая применяется в современных холодильниках, а сам аппарат мог служить одновременно морозильником и кондиционером.
В 1857 году австралиец Джеймс Харрисон стал применять холодильные камеры, работающие с использованием компрессора, в пивоваренной и мясообрабатывающей промышленности.
В 1857 году был создан первый железнодорожный вагон-рефрижератор.
Французский учёный Фердинанд Карре в 1858 году придумал, как за счёт абсорбции аммиака можно получать искусственный холод — придумал первую абсорбционную холодильную машину. Несмотря на то, что его способ был очень удачным, об изобретении забыли на несколько десятилетий.
В 1879 году аристократ из Германии Карл фон Линде изобрёл устройство с компрессором, для работы которого он использовал аммиак. Благодаря его холодильной машине появилась возможность производить лёд в огромном количестве. Данные агрегаты сразу же закупили многие бойни и фабрики, изготавливающие пищевые продукты. Принцип работы представлял собой циркуляцию холодного рассола по системе труб, которая была разветвлена, таким образом помещение, в котором хранились продукты, охлаждалось. Данное изобретение позволило многим предпринимателям открывать холодильные склады больших размеров.
В начале XX века в Москве была открыта фирма, которая предлагала всем желающим агрегат под названием «Эскимо». Данное устройство было изготовлено по принципу, предложенному Фердинандом Карре. При своих больших габаритах, устройство не издавало громкого шума и было универсальным. Для работы необходимы были уголь, дрова, керосин или спирт. Один цикл работы «Эскимо» позволял получить 12 кг льда.
Первый бытовой электрический холодильник был создан в 1913 году. Как и промышленные холодильники, он работал с использованием принципа теплового насоса. В первых бытовых холодильниках в качестве охлаждающей жидкости использовались достаточно токсичные вещества.
В 1926 году Альберт Эйнштейн со своим прежним студентом Лео Силардом предложили вариант конструкции абсорбционного холодильника, именуемого эйнштейновским.
В 1926 году датский инженер Кристиан Стинструп представил миру бесшумный, безвредный и долговечный холодильник, предназначенный именно для дома. Герметичный колпак скрывал как электродвигатель холодильника, так и его компрессор. General Electric приобрела патент на его изобретение.
Первая получившая широкое распространение модель холодильника Monitor-Top была произведена фирмой General Electric в 1927 году. General Electric продала более 1 млн экземпляров Monitor-Top.
С 1930 года в качестве хладагента в бытовых холодильниках применяется фреон. В 1940-е годы в холодильниках появляются морозильные отделения, также возникают обособленные морозильные шкафы. В 1950—1960-е годы на рынок выходят холодильники с функцией размораживания.
В СССР первые образцы бытового компрессионного холодильника производятся в 1937 году. Серийный выпуск холодильников ХТЗ-120 начался в 1939 году на Харьковском тракторном заводе. Ёмкость камеры составляла 120 литров, до начала Великой Отечественной войны выпущено несколько тысяч единиц.
В 1951 году автомобильный завод ЗИС выпустил первую партию знаменитых холодильников «Москва». Холодильники «Москва» отличались высоким качеством изготовления и долговечностью — многие холодильники продолжают работать спустя полвека, однако достигнуто это было ценой высокой трудоёмкости изготовления и расхода большого количества металла.
К 1962 году холодильники имели: в США — 98,3 % семей, в Италии — 20 %, а в СССР — 5,3 % семей.
Назначение холодильника
Бытовые холодильники предназначены для охлаждения и хранения в охлажденном состоянии готовых блюд, полуфабрикатов и скоропортящихся продуктов. Техника с низкотемпературными отделениями также позволяет замораживать продукцию и изготавливать пищевой лед.
Основные типы охлаждающих систем
Бытовые холодильники различаются по принципу действия. Они бывают:
- Компрессорными;
- Адсорбционными;
- Термоэлектрическими;
- Пароэжекторными.
Компрессионные агрегаты отличаются от остальных тем, что хладагент заставляет двигаться изменение давления в системе. Рабочая жидкость изменяет давление благодаря компрессору. Охладительные системы, которые работают по такому принципу, являются одним из самых распространенных типов холодильных агрегатов.
Абсорбционные установки отличаются от своих аналогов тем, что хладагент приводится в движение благодаря нагреванию. Для этого в системе находится специальная установка. Рабочей смесью здесь выступает аммиак. Такие системы не получили широкого распространения в бытовых условиях из-за того, что их сложно обслуживать. Кроме того, аммиак является опасным для человека и животных веществом. В случае выхода его из системы, находящиеся в помещении люди могут получить серьезное отравление, которое может угрожать не только их здоровью, но и жизни. На сегодняшний день агрегаты, работающие по такому принципу, считаются устаревшими. Несколько лет назад они были полностью сняты с производства.
Обратите внимание! Первый бытовой холодильник был изготовлен в США. Это произошло в 1911 году. Корпус агрегата был полностью выполнен из дерева. Хладагентом в нем выступал диоксид серы.
Термоэлектрические агрегаты производят холод благодаря тому, что при взаимодействии двух проводников в моменте прохождения по ним электрического заряда происходит поглощение тепла. Этот принцип известен физикам под названием «Эффекта Пельтье». Главные преимущества агрегатов такого типа в том, что они отличаются своей надежностью и долговечностью. Однако есть и недостаток, который затмевает все преимущества – полупроводниковые системы отличаются высокой стоимостью. Благодаря этому цена на такие холодильники в разы больше, если сравнивать ее с аналогичными устройствами.
Основным компонентом пароэжекторных установок является вода. В качестве двигательной установки здесь используется эжектор. Сначала рабочая жидкость начинает поступать в испаритель. Здесь она нагревается до температуры кипения и начинает выделять водяной пар. После теплообразования температура воды начинает быстро снижаться.
Вода низкой температуры применяется для охлаждения продуктов. После этого эжектор начинает отводить водяной пар на конденсатор. Здесь он охлаждается. После этого он оседает в виде конденсата, т.е. снова превращается в жидкость. Затем вещество начинает вновь поступать на испаритель и процесс повторяется. Основным достоинством установок такого типа выступают безопасность эксплуатации, простота конструкции и экологичность. Недостатком является большой расход воды. Также на ее нагрев потребляется большое количество электроэнергии.
Устройство и принцип действия компрессионного холодильника [ править | править код ]
Схема работы холодильника:
1. Конденсатор
2. Капилляр
3. Испаритель
4. Компрессор
Расположение основных частей холодильного агрегата бытового холодильника:
1. Испаритель
2. Конденсатор
3. Фильтр-осушитель
4. Капилляр и теплообменник
5. Компрессор
Холодильный компрессор
Теоретической основой, на которой построен принцип работы холодильников, является второе начало термодинамики. Охлаждающее рабочее тело (хладагент) в холодильниках совершает так называемый обратный цикл Карно. При этом основной вклад в передачу теплоты вносит изменение термодинамического состояния хладагента не в цикле Карно, а в фазовых переходах — испарении и конденсации хладагента. В принципе, возможно применение в холодильном цикле только цикла Карно, но при этом для достижения высокой хладопроизводительности потребуется или компрессор, создающий очень высокое давление, или очень большая площадь теплообмена в охлаждающем и нагревающем теплообменниках.
Основными составляющими частями холодильника являются:
- компрессор, создающий необходимую разность давлений;
- испаритель, забирающий тепло из внутреннего объёма холодильника;
- конденсатор, отдающий тепло в окружающую среду;
- терморегулирующий вентиль, поддерживающий разность давлений за счёт дросселирования хладагента;
- хладагент — вещество, переносящее тепло от испарителя к конденсатору.
Компрессор засасывает из испарителя хладагент в виде пара, сжимает его (при этом температура хладагента повышается) и нагнетает в конденсатор, где хладагент конденсируется в жидкость отдавая теплоту конденсации во внешнюю среду.
В бытовых холодильниках используются герметичные поршневые мотор-компрессоры. В таких компрессорах электродвигатель располагается внутри корпуса компрессора, что позволяет предотвратить утечки хладагента через уплотнение вала. Для поглощения вибраций применяется упругая подвеска мотор-компрессора. Подвеска мотор-компрессора может быть наружной, когда на пружинах подвешивается весь корпус мотор-компрессора, или внутренней, когда подвешен только электродвигатель компрессора внутри корпуса.
В современных бытовых холодильниках наружная подвеска не применяется, так как она хуже поглощает вибрации компрессора и сильно шумит. Для смазки трущихся частей компрессора и электродвигателя применяют специальные рефрижераторные масла, обладающие низкой температурой застывания. Масло и хладагент хорошо растворяются друг в друге.
В конденсаторе нагретый в результате сжатия хладагент остывает, отдавая тепло во внешнюю среду, и при этом конденсируется, то есть превращается в жидкость, поступающую в капилляр.
В бытовых холодильниках чаще всего применяются ребристо-трубные конденсаторы, в качестве оребрения применяется стальная проволока или стальной перфорированный лист. Отвод тепла от конденсаторов обычно естественный — за счёт конвекции и теплового излучения, в высокопроизводительных и промышленных холодильниках применяется принудительное охлаждение конденсатора вентиляторным воздухом или водой.
Жидкий хладагент под давлением через дросселирующее отверстие (капилляр или терморегулируемый расширительный вентиль) поступает в испаритель, где за счёт резкого уменьшения давления происходит испарение жидкости. При этом хладагент отнимает тепло у внутренних стенок испарителя, отбираемая теплота расходуется на теплоту кипения жидкости, за счёт чего происходит охлаждение холодильного пространства холодильника, где и находится испаритель.
Испарители бытовых холодильников чаще всего листотрубные, сваренные из пары алюминиевых листов с внутренними каналами для прохождения хладагента. Испаритель морозильной камеры часто и является её корпусом, в то время как испаритель холодильной камеры (в холодильниках с двумя испарителями) располагают на задней стенке камеры.
Таким образом, в конденсаторе хладагент под воздействием высокого давления конденсируется и переходит в жидкое состояние, выделяя теплоту, а в испарителе под воздействием низкого давления вскипает и переходит в газообразное, поглощая теплоту.
Терморегулируемый расширительный вентиль необходим для создания необходимой разности давлений между конденсатором и испарителем, при которой происходит цикл теплопередачи. Он позволяет правильно (наиболее полно) заполнять внутренний объём испарителя кипящим хладагентом. Пропускное сечение вентиля изменяется по мере снижения теплового потока в испарителе, при понижении температуры в холодной камере расход циркулирующего хладагента уменьшается.
В бытовых холодильниках чаще всего вместо терморегулируемого расширительного вентиля используется капилляр. Он не меняет своё сечение, а дросселирует определённое количество хладагента, зависящее от давления на входе и выходе капилляра, его диаметра, длины и типа хладагента.
Большое значение имеет чистота хладагента: вода и примеси могут засорить капилляр или повредить компрессор. Примеси могут образовываться в результате коррозии внутренних стенок трубопроводов холодильника, а влага может попасть при заправке холодильника, либо проникнуть через неплотности (особенно в холодильниках с открытым компрессором). Поэтому при заправке тщательно соблюдается герметичность, перед заправкой хладагентом циркуляционный контур вакуумируется. В каждом холодильнике имеется фильтр-осушитель, который устанавливается перед капилляром.
Обычно также применяется простейший противоточный теплообменник, снижающий температуру жидкого хладагента от конденсатора перед подачей в испаритель. В результате в испаритель поступает уже охлаждённый жидкий хладагент, который затем ещё сильнее охлаждается в испарителе, в то время как хладагент, поступивший из испарителя, подогревается, прежде чем поступить в компрессор и конденсатор. Это позволяет увеличить тепловой КПД и производительность холодильника, а также предотвратить попадание жидкого хладагента в компрессор.
Функционирование абсорбционной техники
В системе установок абсорбционного типа циркулируют два вещества – хладагент и абсорбент. Функции хладагента обычно выполняет аммиак, реже – ацетилен, метанол, фреон, раствор бромистого лития.
Абсорбент представляет собой жидкость, которая обладает достаточной поглотительной способностью. Это может быть серная кислота, вода и др.
Вся работа оборудования построена на принципе абсорбции, подразумевающем поглощение одного вещества другим. Конструкция состоит из нескольких ведущих узлов – испарителя, абсорбера, конденсатора, регулирующих вентилей, генератора, насоса
Элементы системы соединены трубками, с помощью которых образуется единый замкнутый контур. Охлаждение камер происходит за счет тепловой энергии.
Процесс осуществляется следующим образом:
- холодильный агент, растворенный в жидкости, проникает в испаритель;
- из концентрированного раствора выделяются кипящие при 33 градусах пары аммиака, охлаждающие объект;
- вещество переходит в абсорбер, где снова поглощается абсорбентом;
- насос перекачивает раствор в генератор, обогреваемый определенным источником тепла;
- вещество закипает и выделяемые аммиачные пары уходят в конденсатор;
- хладагент остывает и преобразовывается в жидкость;
- рабочее тело проходит сквозь регулирующий вентиль, сжимается и отправляется в испаритель.
В результате аммиак, циркулирующий в замкнутом контуре, забирает тепло из охлаждаемой камеры, поступая в испаритель. И отдает его во внешнюю среду, находясь в конденсаторе. Циклы воспроизводятся безостановочно.
Так как агрегат нельзя выключить, он не очень-то экономен и отличается повышенным расходом энергии. Если такое оборудование выходит из строя, отремонтировать его, скорее всего, не получится.
Зависимость абсорбционных приборов от перепадов напряжения, тока и других параметров электросети минимальна. Компактные размеры позволяют с легкостью устанавливать их на любом удобном участке
В конструкции приспособлений нет громоздких движущихся и трущихся элементов, поэтому у них низкий уровень шума. Устройства актуальны для зданий, электрическая сеть которых подвергается постоянным пиковым нагрузкам, и мест, где отсутствует постоянное электроснабжение.
Принцип абсорбции реализуется в промышленных холодильных установках, небольших холодильниках для автомобилей и офисных помещений. Иногда он встречается в отдельных бытовых моделях, функционирующих на природном газу.
Принцип действия термоэлектрических моделей
Снижение температуры в камере термоэлектрического холодильника достигается с помощью специальной системы, которая выкачивает тепло согласно эффекту Пельтье. Он подразумевает поглощение теплоты в области соединения двух разных проводников в момент прохождения через нее электротока.
Конструкция холодильников состоит из термоэлектрических элементов в форме куба, изготовленных из металлов. Они объединяются одной электрической схемой. Вместе с передвижением тока из одного элемента в другой перемещается и тепло.
Алюминиевая пластина поглощает его из внутреннего отсека, а затем передает кубическим рабочим деталям, которые, в свою очередь, выполняют перенаправление к стабилизатору. Там благодаря вентилятору, оно выбрасывается наружу. По такому принципу работают переносные мини-холодильники и сумки с охлаждающим эффектом.
В большинстве моделей термоэлектрических холодильных приборов при переключении полярности питания можно получать не только холод, но и тепло – до 60 градусов Цельсия. Эта функция применяется для подогрева продуктов
Данное оборудование используется в кемпинге, в сфере обустройства легковых автомобилей, яхт и моторных лодок, часто ставится на дачах и в других местах, где можно обеспечить устройство электропитанием с напряжением в сети 12 В.
В термоэлектрических изделиях предусмотрен специальный аварийный механизм, который отключает их в случае перегрева рабочих деталей или отказа системы вентиляции.
К преимуществам подобного метода работы относятся высокая надежность и довольно низкий уровень шума при эксплуатации приборов. В числе недостатков – дороговизна, чувствительность к внешним температурам.
Принцип работы саморазмораживающегося холодильника
В технике с капельной системой испаритель располагается на задней стенке камеры. Образующийся иней тает и по желобам стекает в поддон, который находится в нижней части техники. После этого жидкость испаряется при помощи компрессора.
Капельную систему еще называют «плачущей стенкой»
Особенности оборудования на вихревых охладителях
В приборах этой категории присутствует компрессор. Он сжимает воздух, который в дальнейшем расширяется в установленных блоках вихревых охладителей. Объект охлаждается вследствие резкого расширения сжатого воздуха.
Вихревые приспособления долговечные и безопасные: они не нуждаются в электричестве, не имеют движущихся элементов, не содержат опасных химических составов во внутренней системе конструкции
Широкого распространения метод вихревых охладителей не получил, а ограничился лишь тестовыми образцами. Это объясняется большим расходом воздуха, очень шумной работой и относительно низкой холодопроизводительностью. Иногда устройства применяют на промышленных предприятиях.
Принцип работы инверторного холодильника
Электродвигатель стандартного компрессора то запускается, то выключается, испытывая при этом значительные нагрузки. Инверторная установка обеспечивает непрерывную работу мотора, изменяется лишь скорость его вращения. Такой режим позволяет сэкономить электроэнергию и снизить износостойкость отдельных деталей прибора.
Линейный компрессор более экономичный
Принцип работы холодильника ноу фрост с одним компрессором
Главный недостаток обычных холодильников для дома — превращение попадающей в камеру влаги в иней, который покрывает внутренние стенки прибора, перегружает компрессор и препятствует нормальному процессу охлаждения.
При наличии системы No Frost влага не замерзает, поэтому необходимость в регулярной разморозке холодильника отсутствует. Система предполагает наличие вентилятора, который располагается за испарителем и обеспечивает равномерное охлаждение продукции воздушными потоками. При этом на стенках испарителя скапливается конденсат, постепенно начинающий превращаться в иней. Благодаря специальному таймеру периодически включается ТЭН и лед тает. Образовавшаяся жидкость по трубкам перемещается в размещенный вне камеры поддон, откуда испаряется естественным путем.
Холодильники с системой «Ноу Фрост» реже нуждаются в уходе. Единственный их недостаток — сравнительно быстрое пересыхание продуктов из-за циркулирующего внутри камеры воздуха.
Как устроен холодильник
Устройство и принцип работы предусматривают сочетание различных узлов. Наиболее важными считаются:
- Конденсатор.
- Двигатель.
- Испаритель.
- Капиллярная трубка.
- Докипатель.
- Осушительный фильтр.
Хладагент выступает в качестве основного активного элемента, за счет которого происходит снижение температуры. Дополнительные узлы требуются для упрощения процедуры управления. Современные модели снабжаются дисплеем, который отображает основную информацию. Устройство холодильника определяет возможность его установки в соответствии с рекомендациями в инструкции по эксплуатации.
Электродвигатель
Компрессорный холодильник снабжается двигателем, который предназначен для циркуляции охлаждающей жидкости по трубкам. Фреон продается в специализированных магазинах, заправляется исключительно при помощи специального оборудования. Рассматриваемый агрегат состоит из двух основных элементов:
- Электрического мотора.
- Компрессора.
Предназначение первого заключается в преобразовании электрического тока в механическую энергию. При этом конструкция состоит из двух элементов:
- Статора.
- Ротора.
При изготовлении статора применяется несколько медных катушек, ротор представлен стальным валом. Прохождение электрического тока становится причиной появления электромагнитной индукции, за счет которой возникает крутящий момент. Ротор приводится в движение под воздействием центробежной силы.
Подобный узел бытового устройства потребляет не менее 10% энергии. При частом открывании дверцы показатель электропотребления существенно повышается, т. к. происходит попадание теплого воздуха. Вращение ротора приводит к возвратно-поступательному движению поршня, за счет которого происходит перемещение жидкости.
Современные конструкции предусматривают установку компрессоров, внутрь которых вставляется электрический двигатель. Подобное расположение исключает вероятность самопроизвольной утечки вещества. Снизить степень вибрации устройства можно за счет установки двигателя на пружинах. Поэтому новые модели холодильников работают практически бесшумно.
Конденсатор
Изменение температуры окружающей среды может стать причиной прохождения различных процессов, большая часть которых связана с появлением влаги. Конденсатор считается важным элементом системы, он представлен трубкой диаметром до 5 мм.
Предназначение системы заключается в отводе тепла от рабочей жидкости в окружающую среду. В большинстве случаев этот элемент располагается сзади устройства, механическое воздействие может стать причиной повреждения.
Испаритель
За охлаждение окружающего пространства отвечает испаритель рабочей жидкости. Этот элемент может быть расположен снаружи или внутри морозильной камеры.
Применяемый принцип работы позволяет снизить степень воздействия окружающей среды на внутреннюю. Поэтому производители смогли снизить вес конструкции.
Капиллярная трубка
В системе применяется газ, который обеспечивает снижение температуры внутри основной и морозильной камер. Для снижения давления проводится установка капиллярной трубки. Ее особенности заключаются в нижеприведенных моментах:
- Диаметр составляет 1,5-3 мм.
- Располагается на участке между конденсатором и испарителем.
При изготовлении часто применяется медь. Основное требование заключается в высокой степени герметизации.
Докипатель
Представляет собой металлическую емкость. Устанавливается на участке между испарителем и входом компрессора. Предназначен для доведения фреона до кипения с последующим испарением.
Служит защитой двигателя от попадания жидкости. Попадание рабочей жидкости может привести к выходу его из строя.
Фильтр-осушитель
Предназначен для очистки рабочего газа от влаги. Имеет вид медной трубки диаметром от 10 до 20 мм. Концы трубки вытянуты и герметично впаяны с капиллярную трубку и конденсатор.
Внимание! Фильтр-осушитель имеет односторонний принцип работы. Устройство не предназначено для работы на обратном режиме. При неправильной установке фильтра возможен выход установки из строя.
Внутри трубки находится цеолит — минеральный наполнитель с высокопористой структурой. На обоих концах трубки установлены заграждающие сетки.
Фильтр-осушитель
Со стороны конденсатора установлена металлическая сеточка с размерами ячеек до 2 мм. Со стороны капиллярной трубки установлена синтетическая сетка. Размеры ячеек такой сетки составляют десятые доли миллиметра.
Термостат
Практически все холодильники снабжаются терморегулятором. Этот элемент предназначен для изменения температуры внутри основной или морозильной камеры. Особенности термостата следующие:
- Контролирует температуру внутри холодильника.
- Выступает в качестве регулирующего элемента.
Современный термостат позволяет указывать температуру с высокой точностью. При этом регулирующий блок электронный, основная информация отображается на аналоговом или ЖК-дисплее.
Обзор компрессорной техники
Компрессорные холодильники – наиболее распространенный тип оборудования в быту. Они есть почти в каждом доме — потребляют не слишком много энергоресурсов и безопасны в эксплуатации. Самые удачные модели надежных производителей служат своим владельцам более 10 лет. Рассмотрим их строение и принципы, по которым они работают.
Особенности внутреннего устройства
Классический бытовой холодильник – это вертикально ориентированный шкаф, оснащенный одной или двумя дверцами. Его корпус изготавливается из жесткой листовой стали толщиной около 0,6 мм либо прочного пластика, облегчающего вес несущей конструкции.
Для качественной герметизации изделия применяют пасту с высоким содержанием хлорвиниловой смолы. Поверхность грунтуется и покрывается качественной эмалью из краскопультов. В производстве внутренних металлических отделений задействуют так называемый способ штамповки, пластиковые шкафы делают по методу вакуумного формования.
Двери прибора состоят из стальных листов. По краям вставляется плотный резиновый уплотнитель, не пропускающий внешний воздух. В некоторые модификации встраивают магнитные затворы
Между внутренней и наружной стенкой изделия обязательно прокладывают слой теплоизоляции, который защищает камеру от тепла, пытающегося проникнуть из окружающей среды, и предотвращают потерю образующегося внутри холода. Для этих целей хорошо подходит минеральный или стеклянный войлок, пенополистирол, пенополиуретан.
Внутреннее пространство традиционно подразделяется на две функциональные зоны: холодильную и морозильную.
По форме компоновки различают:
- одно-;
- двух-;
- многокамерные приборы.
В отдельный вид выделены агрегаты Side-by-Side, включающие две, три или четыре камеры.
Однокамерные агрегаты снабжены одной дверью. В верхней части оборудования размещен морозильный отсек с собственной дверцей с откидным или открывающимся механизмом, в нижней – холодильный отдел с регулируемыми по высоте полками.
В камерах устанавливается осветительная аппаратура со светодиодом или обычной лампой накаливания для того, чтобы видеть, что, собственно, в холодильнике лежит.
Приборы, сделанные по типу «бок о бок», гораздо объемнее и шире собратьев. Оба отсека в них занимают пространство по всей высоте оборудования. Они расположены параллельно друг другу
В двухкамерных агрегатах внутренние шкафы изолированы и отделены каждый своей дверью. Расположение отделов в них может быть европейским и азиатским. Первый вариант предполагает нижнюю компоновку морозильной камеры, второй – верхнюю.
Составляющие элементы конструкции
Холодильные установки компрессорного типа не производят холод. Они охлаждают объект, вбирая внутреннее тепло и переправляя его наружу.
Процедура образования холода протекает с участием следующих узлов:
- охладительный агент;
- конденсатор;
- испарительный радиатор;
- компрессорный аппарат;
- терморегулирующий вентиль.
В роли хладагента, которым заполняют систему холодильника, выступают различные марки фреона – смеси газов с высоким уровнем текучести и довольно низкими показателями температуры кипения/испарения. Смесь передвигается по замкнутому контуру, перенося тепло по различным участкам цикла.
В большинстве случаев в качестве рабочего элемента для домашних холодильных машин производители применяют Фреон 12. Этот бесцветный газ с едва ощутимым специфическим запахом не ядовит для человека и не влияет на вкус и свойства продуктов, хранящихся в камерах
Компрессор – центральная часть конструкции любого холодильника. Это инверторный или линейный агрегат, провоцирующий принудительную циркуляцию газа в системе, нагнетая давление. Проще говоря, компрессор холодильника сжимает пары фреона и заставляет их двигаться в нужном направлении.
Техника может быть оснащена одним или двумя компрессорами. Вибрации, возникающие при работе, поглощает внешняя либо внутренняя подвеска. В моделях с парой компрессоров за каждую камеру отвечает отдельное устройство.
Классификацией компрессоров предусмотрено два подтипа:
- Динамический. Вынуждает хладагент передвигаться за счет силы движения лопастей центробежного или осевого вентилятора. Имеет простое строение, но из-за низкого КПД и быстрого износа под действием крутящего момента в бытовом оборудовании используется редко.
- Объемный. Сжимает рабочее тело при помощи специального механического устройства, которое запускается электродвигателем. Бывает поршневым и роторным. В основном в холодильниках устанавливаются именно такие компрессоры.
Поршневой аппарат представлен в виде электромотора с вертикальным валом, заключенного в цельный металлический кожух. Когда пусковое реле подсоединяет питание, он активизирует коленчатый вал, а поршень, закрепленный на нем, начинает двигаться.
К работе подключается система открывающихся и закрывающихся клапанов. В итоге фреоновые пары вытягиваются из испарителя и нагнетаются в конденсатор.
При поломках поршневого компрессора ремонт возможен только при условии применения специализированного профессионального оборудования. Любая разборка в бытовой обстановке чревата потерей герметичности и невозможностью дальнейшей эксплуатации
В роторных механизмах необходимое давление поддерживается двумя роторами, движущимися навстречу друг другу. Фреон попадает в верхний карман, расположенный в начале валов, сжимается и выходит через нижнее отверстие небольшого диаметра. Для уменьшения трения в пространство между валами вводится масло.
Конденсаторы выполняются в виде решетки-змеевика, которую закрепляют на задней либо боковой стенке оборудования.
Они имеют разную конструкцию, но всегда отвечают за одну задачу: охлаждение горячих газовых паров до заданных значений температуры путем конденсации вещества и рассеивания тепла в помещении. Бывают щитовыми или ребристо-трубчатыми.
Испаритель состоит из тонкого алюминиевого трубопровода, спаянных стальных пластинок. Он контактирует с внутренними отсеками холодильника, эффективно отводит поглощенное тепло из прибора и существенно понижает температуру в шкафах
Терморегулирующий вентиль нужен для того, чтобы поддерживать давление рабочего тела на определенном уровне. Крупные узлы агрегата связывают между собой системой трубок, образующих герметичное замкнутое кольцо.
Последовательность рабочего цикла
Оптимальная температура для долговременного хранения провизии в компрессионных приборах создается в ходе рабочих циклов, осуществляющихся один за другим.
Протекают они следующим образом:
- при подключении аппарата к электросети запускается компрессор, сжимающий пары фреона, синхронно повышая их давление и температуру;
- под силой действия избыточного давления горячее рабочее тело, находящееся в газовом агрегатном состоянии, попадает в емкость конденсатора;
- передвигаясь по длинной металлической трубке, пар выбрасывает накопленное тепло во внешнюю среду, плавно остывает до комнатных температурных значений и превращается в жидкость;
- жидкое рабочее тело проходит через фильтр-осушитель, поглощающий лишнюю влагу;
- хладагент проникает сквозь узкую капиллярную трубку, на выходе из которой снижается его давление;
- вещество остывает и преобразовывается в газ;
- охлажденный пар добирается до испарителя и, проходя по его каналам, забирает тепло из внутренних отделений холодильного агрегата;
- температура фреона повышается, и он опять отправляется в компрессор.
Если говорить простыми словами о том, как работает компрессорный холодильник, то процесс выглядит так: компрессор перегоняет хладагент по замкнутому кругу. Фреон, в свою очередь, меняет агрегатное состояние благодаря специальным приспособлениям, собирает тепло внутри и переносит его наружу.
Рабочий цикл в системе повторяется до тех пор, пока не будут достигнуты температурные значения, заданные системными программами, и возобновляется вновь, когда фиксируется их повышение
После охлаждения до нужных параметров терморегулятор останавливает мотор, размыкая электрическую цепь.
Когда температура в камерах начинает повышаться, контакты замыкаются вновь, а электродвигатель компрессора приводится в действие защитно-пусковым реле. Именно поэтому в процессе работы холодильника постоянно то появляется, то опять затихает гул мотора.
Теоретический и реальный цикл холодильной установки
На этом рисунке представлен теоретический цикл простейшей холодильной установки. Видно, что в испарителе происходит не только непосредственно испарение, но и перегрев пара. А в конденсаторе пар превращается в жидкость и несколько переохлаждается. Это необходимо в целях повышения энергоэффективности технологического процесса.
Левая часть кривой – это жидкость в состоянии насыщения, а правая – насыщенный пар. То, что между ними – паро-жидкостная смесь. На линии D-A` происходит изменение теплосодержания холодильного агента, сопровождающееся выделением тепла. А вот отрезок В-С` наоборот, указывает на выделение холода в процессе кипения рабочей среды в трубках испарителя.
Реальный рабочий цикл отличается от теоретического ввиду наличия потерь давления на трубопроводной обвязке компрессора, а также на его клапанах.
Чтобы компенсировать данные потери работа сжатия должна быть увеличена, что снизит эффективности цикла. Данный параметр определяется отношением холодильной мощности, выделяемой в испарителе к мощности, потребляемой компрессором и электрической сети.
Эффективность работы установки – это сравнительный параметр. Он не указывает непосредственно на производительность холодильника. Если данный параметр 3,3, это будет указывать, что на единицу электроэнергии, потребляемой установкой, приходится 3,3 единицы произведенного ею холода.
Чем больше этот показатель, тем выше эффективность установки.
Типы хладагентов
В качестве хладагента в холодильных машинах используются различные жидкости и газы — аммиак, пропан, фреоны (смеси углеводородов). Используемый в холодильной машине хладагент сильно влияет как на ее характеристики, так и на условия эксплуатации. Например, кондиционер, заправленный фреоном R-134a (температура кипения -26,5 °С) при -30 на улице работать в режиме обогрева не будет вообще — фреон просто не вскипит в наружном блоке. Более того, попытка включения кондиционера в таких условиях с большой вероятностью приведет к его поломке — попадание жидкости (а не газа) в компрессор обычно выводит его из строя.
Чем ниже температура кипения хладагента, тем более низкую температуру можно получить на испарителе холодильной машины. Однако, понизить температуру в морозильнике, просто поменяв фреон на более «холодный», скорее всего, не выйдет — хладагенты с низкой температурой кипения требуют большего давления для конденсации. Компрессор, рассчитанный на фреон с высокой температурой кипения, просто не сможет создать такое давление. Поэтому при замене хладагента следует придерживаться рекомендаций из инструкции, и не заправлять хладагент с характеристиками, сильно отличающимися от рекомендованных.
В бытовых устройствах чаще всего используются следующие хладагенты:
Фреон R22 (хладон 22, хлордифторметан) до недавних пор часто использовался в холодильных и морозильных установках. Обладает достаточно низкой температурой кипения (-40,8°С), при утечке возможна дозаправка системы. Однако из-за вреда, наносимого окружающей среде (разрушение озонового слоя) R22 в последнее время используется редко, а во многих странах вообще запрещен.
R410A и R407С (хлорофторокарбонат, температура кипения -51,4°С) используются взамен R22. Они не вредят экологии, но требуют большего давления для конденсации, поэтому техника, заправляемая R410 или R407, стоит дороже. Кроме того, при возникновении утечек в системе, заполненной этими фреонами, могут возникнуть проблемы. Эти фреоны состоят из нескольких компонентов, которые улетучиваются неравномерно, поэтому при утечке более чем 40 % R410A дозаправка уже невозможна. Еще хуже обстоит дело с R407C – при возникновении утечки систему следует перезаправлять полностью.
R134 (тетрафторэтан) используется в кондиционерах взамен вышедшего из употребления R12. Температура кипения R134 составляет -26,3°С, поэтому в низкотемпературной технике он не используется. Однако, хоть R134 и не вреден для озонового слоя, он относится к газам, усиливающим парниковый эффект, поэтому безвредным его назвать нельзя.
R600a (изобутан) все чаще используется в холодильной технике вместо менее экологичного R134. Его преимуществами являются низкое давление конденсации и высокая удельная теплота парообразования – холодильники, использующие этот фреон, дешевле и экономичнее. Однако из-за высокой температуры кипения (-12°С) заправленную им технику нельзя использовать на улице при отрицательных температурах.
Следует также помнить о том, что каждый тип фреона требует использования определенного вида масла для смазки деталей компрессора. Обычно тип (а иногда и марка масла) приводятся в сопроводительной документации к фреону. Использование других масел может привести к поломке компрессора.
Как видно, ничего сложного в холодильной технике нет, а понимание принципов ее работы может значительно продлить жизнь технике, позволить сэкономить на электроэнергии и уберечь от неправильных действий, могущих привести к поломке прибора.
Виды бытовых холодильников
По своему количеству камер холодильники делятся на:
- Однокамерные;
- Двухкамерные;
- Многокамерные (три и более камер).
Также холодильник может иметь разное количество компрессоров. В обычных аппаратах используется один, но в некоторых моделях бывают два компрессора. От их количества и мощности зависит потребление электроэнергии холодильником.
Однокамерные холодильники
Это наиболее простой аппарат. Чаще в нем только одна камера для хранения продуктов, в которой поддерживается постоянная температура. Но существуют варианты с двумя отделениями – обычным и морозилкой.
Однокамерный холодильник имеет один испаритель. Более низкая температура в морозильной камере обеспечивается тем, что фреон сначала проходит через нее и немного нагревается. После этого он попадает в основной отсек.
Двухкамерные холодильники
В таких агрегатах есть обычная камера, отделенная от морозильной. Их отличие от однокамерных в том, что в каждом отсеке установлен свой испаритель. Это позволяет точно регулировать и поддерживать температурный режим. Двухкамерный холодильник может быть оснащен одним или двумя компрессорами.
Многокамерные холодильники
Такие модели довольно дороги и могут быть трех-, четырех- и пятикамерными. Как и в двухкамерных, в них есть морозильный отсек с минусовой температурой и обычный. Но в дополнение к ним есть отдельные отделения.
В многокамерных холодильниках есть нулевой отсек или зона свежести. В них поддерживается отдельный температурный режим. Чаще всего это 0…+1 градуса. В трехкамерных такой отсек один, в четырехкамерных – два, в пятикамерных – три.
Каждая зона свежести предназначена для хранения определенных продуктов. Например:
- Рыбы;
- Овощей и фруктов;
- Мясных продуктов.
Холодильники Side-by-Side
Холодильники премиум класса, пришедшие на отечественный рынок из Америки, представляет собой большие и достаточно вместительные приборы, выполненные в виде двухдверных шкафов. Оба отделения – морозильное и холодильное в данном случае расположены вертикально, целиком занимая левую и правую часть конструкции.
Ширина такого устройства значительно больше, по сравнению с обычными многокамерными моделями, что требует наличия дополнительного свободного пространства в помещении. На наружной поверхности двери морозильного отсека, как правило, установлен диспенсер, подающий холодную воду или кубики льда.
Холодильник без электричества – правда или вымысел?
Житель Нигерии Мохаммед Ба Абба в 2003 году получил патент на холодильник без электричества. Устройство представляет собой глиняные горшки разной величины. Сосуды сложены друг в друга по принципу русской «матрешки».
Холодильник без электричества
Пространство между горшками заполняют влажным песком. В качестве крышки используется влажная ткань. Под действием жаркого воздуха влага из песка испаряется. Испарение воды приводит к снижению температуры внутри сосудов. Это позволяет длительное время хранить продукты на жарком климате без использования электроэнергии.
Знание устройства и принципа работы холодильника позволит выполнить несложный ремонт устройства своими руками. Если система настроена правильно, значит прибор будет работать долгие годы. При более сложных неисправностях следует обратиться к специалистам сервисных центров.
Рекомендации по эксплуатации и уходу
В эксплуатации оборудования нет ничего сложного: оно функционирует в автоматическом режиме круглосуточно. Единственное, что необходимо сделать при первом включении и периодически корректировать в процессе работы, – установить оптимальный в конкретных обстоятельствах температурный режим.
Нужная температура задается терморегулятором. В электромеханической системе значения выставляются на глаз или с учетом рекомендаций, указанных в инструкции производителя. При этом следует брать во внимание тип и количество продуктов, хранящихся в холодильнике.
Ручка регулятора, как правило, представляет собой круглый механизм с несколькими делениями, либо, в моделях посовременнее и подороже, управление можно осуществлять с помощью сенсорной панели.
Для того чтобы оценить степень заморозки, специалисты советуют поначалу поставить регулятор в среднее положение, а спустя некоторое время при необходимости подкрутить его вправо или влево
Каждая отметка на такой ручке соответствует определенному температурному режиму: чем больше деление, тем ниже температура. Электронный блок же позволяет задать температуру с максимальной точностью до 1 градуса с помощью поворотного регулятора или кнопок.
Например, установить в морозильном отсеке значение -14 градусов. Все введенные параметры будут отображаться на цифровом дисплее.
Чтобы максимально продлить жизнь домашнему холодильнику, следует не только разбираться в его устройстве, но и грамотно за ним ухаживать. Отсутствие должного сервиса и неправильная эксплуатация может привести к быстрому изнашиванию важных деталей и неполноценному функционированию.
Избежать нежелательных последствий можно, придерживаясь ряда правил:
- Регулярно чистить конденсатор от грязи, пыли и паутины в моделях с открытой металлической решеткой на задней стенке. Для этого нужно использовать обычную слегка увлажненную тряпку или пылесос с маленькой насадкой.
- Правильно установить технику. Следить за тем, чтобы расстояние между конденсатором и стеной комнаты было не меньше 10 см. Такая мера поможет обеспечить беспрепятственную циркуляцию воздушных масс.
- Своевременно размораживать, не допуская образования чрезмерного слоя снега на стенках камер. При этом для устранения ледовых корок запрещено пускать в ход ножи и другие острые предметы, которые могут легко повредить и вывести из строя испаритель.
Также нужно учитывать, что холодильник нельзя ставить рядом с нагревательными приборами и в местах, где возможен прямой контакт с солнечными лучами. Избыточное влияние внешнего тепла плохо сказывается на работе основных узлов и общей производительности прибора.
Для чистки фрагментов изделия, выполненных из нержавеющей стали, подходят только специальные средства, рекомендованные производителем в инструкции к прибору
Если планируется перевозка с места на место, то лучше всего транспортировать оборудование в грузовом автомобиле с высоким фургоном, фиксируя его в строго вертикальном положении.
Таким образом, можно предотвратить поломки, вытекание масла из компрессора, попадающего непосредственно в контур циркуляции охлаждающего агента.
[spoiler title=”Источники”]
- https://make-a-choice.ru/princzip-raboty-holodilnika-ustrojstvo-i-shema/
- https://ru.wikipedia.org/wiki/%D0%A5%D0%BE%D0%BB%D0%BE%D0%B4%D0%B8%D0%BB%D1%8C%D0%BD%D0%B8%D0%BA
- https://tehnofaq.ru/kak-ustroen-i-rabotaet-bytovoj-holodilnik/
- https://sovet-ingenera.com/tech/xolodilniki/princip-raboty-xolodilnika.html
- https://Tehno.expert/holodilnik/printsip-raboty.html
- https://dns-magazin.ru/v-kuhne/princip-raboty-holodilnika.html
- https://serp1.ru/princip-raboty-holodilnika-1-i-2-kompressora/
- https://VTeple.xyz/princip-raboty-holodilnika/
[/spoiler]